Hyperspectral Reconnaissance: Joint Characterization of the Spectral Mixture Residual Delineates Geologic Unit Boundaries in the White Mountains, CA

Author:

Sousa Francis J.ORCID,Sousa Daniel J.ORCID

Abstract

We use a classic locale for geology education in the White Mountains, CA, to demonstrate a novel approach for using imaging spectroscopy (hyperspectral imaging) to generate base maps for the purpose of geologic mapping. The base maps produced in this fashion are complementary to, but distinct from, maps of mineral abundance. The approach synthesizes two concepts in imaging spectroscopy data analysis: the spectral mixture residual and joint characterization. First, the mixture residual uses a linear, generalizable, and physically based continuum removal model to mitigate the confounding effects of terrain and vegetation. Then, joint characterization distinguishes spectrally distinct geologic units by isolating residual, absorption-driven spectral features as nonlinear manifolds. Compared to most traditional classifiers, important strengths of this approach include physical basis, transparency, and near-uniqueness of result. Field validation confirms that this approach can identify regions of interest that contribute significant complementary information to PCA alone when attempting to accurately map spatial boundaries between lithologic units. For a geologist, this new type of base map can complement existing algorithms in exploiting the coming availability of global hyperspectral data for pre-field reconnaissance and geologic unit delineation.

Funder

United States Department of Agriculture

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference89 articles.

1. Bernknopf, R.L., Brookshire, D.S., Soller, D.R., McKee, M.J., Sutter, J.F., Matti, J.C., and Campbell, R.H. US Geological Survey Circular 111. Societal Value of Geologic Maps, 1993.

2. Vannithone, S. The Map That Changed the World: William Smith and the Birth of Modern Geology, 2001.

3. Air Survey and Empire Development;Crosthwait;J. R. Soc. Arts,1928

4. McCurdy, P. Manual of Photogrammetry, 1944.

5. Topographic Structure from Motion: A New Development in Photogrammetric Measurement;Fonstad;Earth Surf. Process. Landf.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3