Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration

Author:

Penttinen PetriORCID,Vimpari JussiORCID,Junnila Seppo

Abstract

European Union climate goals aim to increase waste incineration instead of landfills. Incineration of waste increases the mismatch between heat production and consumption since waste is generated constantly but energy demand varies significantly between seasons. Seasonal energy storage is suggested to alleviate this mismatch. However, traditional seasonal storage options have not been cost-effective investments for energy companies. This paper explores the feasibility of a large cavern thermal energy storage in a large district heating system with waste incineration. First, 62 one-year optimisations for seasonal storage with varying size and power were conducted to determine the economic performance of the system. Second, the annual system emissions were estimated. The results show that even small capacity seasonal storage reduces system emissions significantly. Return on investment for the most profitable storage with a capacity of 90 GWh and power of 200 MW range between 3.6% and 9.4%, and the investment varies between EUR 43–112 M depending on costs. Seasonal energy storages are still not as profitable as traditional energy investments. This might change due to growing waste heat recovery and the rising cost of carbon emissions. Further research is needed into new business models for implementing large seasonal storages.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. 2050 Long-Term Strategyhttps://ec.europa.eu/clima/policies/strategies/2050_en

2. Mitigating CO2emissions from energy use in the world's buildings

3. Competitive Cities and Climate Change

4. The Role of Waste-To-Energy in the Circular Economyhttps://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2017:0034:FIN:EN:PDF

5. Eionet Portalhttps://www.eionet.europa.eu/etcs/etc-wmge/products/etc-reports/assessment-of-waste-incineration-capacity-and-waste-shipments-in-europe

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3