Experimental Research of the Heat Transfer into the Ground at Relatively High and Low Water Table Levels

Author:

Zdankus Tadas1ORCID,Vaiciunas Juozas1ORCID,Bandarwadkar Sandeep1

Affiliation:

1. Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania

Abstract

During the cold period, the heat transferred through the building’s external boundaries to the environment changes the naturally established heat balance between atmospheric air and soil layers. The process of the heat transfer into the ground was investigated experimentally in the cases of the relatively high and low levels of the water table. The first part of each experiment was the research of the heat transfer into the soil from the heating surface. The second part was monitoring the heat dissipation in the ground until the return to the initial natural thermodynamic equilibrium after the heating is intercepted. The heating device was installed into the clay at a one-meter depth, and its surface temperature was kept constant at 20 degrees Celsius. The ground was warmed up in contact with the heating surface. The heat spread to other soil layers and transformed the temperature distribution. A new thermodynamic equilibrium was reached six days after the heating started at an initial temperature of 4.4 degrees Celsius. The intensity of the heat flux density approached a stable value equal to 117.4 W/m2, which is required to maintain this thermodynamic equilibrium, as the heat was dissipating in the large volume of the surrounding soil. The heating was turned off, and the natural initial heat balance was reached after two weeks.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3