Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing Images

Author:

Chen Jing1,Xia Min1ORCID,Wang Dehao1,Lin Haifeng2ORCID

Affiliation:

1. Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, B-DAT, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

The segmentation algorithm for buildings and waters is extremely important for the efficient planning and utilization of land resources. The temporal and space range of remote sensing pictures is growing. Due to the generic convolutional neural network’s (CNN) insensitivity to the spatial position information in remote sensing images, certain location and edge details can be lost, leading to a low level of segmentation accuracy. This research suggests a double-branch parallel interactive network to address these issues, fully using the interactivity of global information in a Swin Transformer network, and integrating CNN to capture deeper information. Then, by building a cross-scale multi-level fusion module, the model can combine features gathered using convolutional neural networks with features derived using Swin Transformer, successfully extracting the semantic information of spatial information and context. Then, an up-sampling module for multi-scale fusion is suggested. It employs the output high-level feature information to direct the low-level feature information and recover the high-resolution pixel-level features. According to experimental results, the proposed networks maximizes the benefits of the two models and increases the precision of semantic segmentation of buildings and waters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images;Shu;Int. J. Appl. Earth Obs. Geoinf.,2022

2. Axial Cross Attention Meets CNN: Bi-Branch Fusion Network for Change Detection;Song;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2023

3. WaterHRNet: A multibranch hierarchical attentive network for water body extraction with remote sensing images;Yu;Int. J. Appl. Earth Obs. Geoinf.,2022

4. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow;Qu;Comput. Geosci.,2021

5. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation;Lu;Neural Comput. Appl.,2022

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3