3D-UNet-LSTM: A Deep Learning-Based Radar Echo Extrapolation Model for Convective Nowcasting

Author:

Guo Shiqing1,Sun Nengli1ORCID,Pei Yanle1,Li Qian1

Affiliation:

1. The College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410005, China

Abstract

Radar echo extrapolation is a commonly used approach for convective nowcasting. The evolution of convective systems over a very short term can be foreseen according to the extrapolated reflectivity images. Recently, deep neural networks have been widely applied to radar echo extrapolation and have achieved better forecasting performance than traditional approaches. However, it is difficult for existing methods to combine predictive flexibility with the ability to capture temporal dependencies at the same time. To leverage the advantages of the previous networks while avoiding the mentioned limitations, a 3D-UNet-LSTM model, which has an extractor-forecaster architecture, is proposed in this paper. The extractor adopts 3D-UNet to extract comprehensive spatiotemporal features from the input radar images. In the forecaster, a newly designed Seq2Seq network exploits the extracted features and uses different convolutional long short-term memory (ConvLSTM) layers to iteratively generate hidden states for different future timestamps. Finally, the hidden states are transformed into predicted radar images through a convolutional layer. We conduct 0–1 h convective nowcasting experiments on the public MeteoNet dataset. Quantitative evaluations demonstrate the effectiveness of the 3D-UNet extractor, the newly designed forecaster, and their combination. In addition, case studies qualitatively demonstrate that the proposed model has a better spatiotemporal modeling ability for the complex nonlinear processes of convective echoes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Hunan Province Natural Science Foundation

Fengyun Application Pioneering Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3