Effects of Surface Wave-Induced Mixing and Wave-Affected Exchange Coefficients on Tropical Cyclones

Author:

Zhang Wenqing123,Zhang Jialin4,Liu Qingxiang123,Sun Jian123ORCID,Li Rui3ORCID,Guan Changlong123

Affiliation:

1. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, 238 Songling Road, Qingdao 266100, China

2. Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 266100, China

3. College of Oceanic and Atmospheric Sciences, Ocean University of China, 238 Songling Road, Qingdao 266100, China

4. Qingdao Municipal Marine Development and Promotion Center, 17 Shandong Road, Qingdao 266071, China

Abstract

Surface waves perform a crucial role in modulating tropical cyclone (TC) systems and have proved to be key for numerical TC predictions. In this study, we investigate the effects of wave-induced mixing and wave-affected surface exchange coefficients using a coupled ocean–atmosphere–wave model for two real TC cases: Shanshan (2018) and Megi (2010). The results demonstrate that wave-affected surface exchange coefficients enhance air–sea heat fluxes and have a significantly positive effect on simulated TC intensity, size, and strengthening process. In contrast, the wave-induced mixing has a negative impact on TC intensity and size and is not conducive to TC intensification and maintenance. The net effect of these two factors is a balance between the wave-affected positive contribution and the negative contribution from wave-induced sea surface temperature cooling. We find that the effect of wave-induced mixing on a TC system depends on the local thermal structure of the ocean. When the thermocline is weak and there is warm water at the wave-induced mixing penetration depth, the negative effect of the wave-induced mixing is weak. However, when there is cold subsurface water and a strong thermocline, wave-induced mixing has a significant impact, which exceeds the wave-driven positive feedback.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3