Radiative Energy Budget for East Asia Based on GK-2A/AMI Observation Data

Author:

Zo Il-Sung1,Jee Joon-Bum2ORCID,Lee Kyu-Tae1ORCID,Lee Kwon-Ho13,Lee Mi-Young1,Kwon Yong-Soon1

Affiliation:

1. Research Institute for Radiation-Satellite, Gangneung-Wonju National University (GWNU), Gangneung, 7, Jukheon-gil, Gangneung 25457, Gangwon, Republic of Korea

2. Research Center for Atmosphere and Environment, Hankuk University of Foreign Studies (HUFS), 81, Oaedae-ro, Yonginm 17035, Gyeonggi, Republic of Korea

3. Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University (GWNU), Gangneung, 7, Jukheon-gil, Gangneung 25457, Gangwon, Republic of Korea

Abstract

The incident and emitted radiative energy data for the top of the atmosphere (TOA) are essential in climate research. Since East Asia (11–61°N, 80–175°E) is complexly composed of land and ocean, real-time satellite data are used importantly for analyzing the detailed energy budget or climate characteristics of this region. Therefore, in this study, the radiative energy budget for East Asia, during the year 2021, was analyzed using GEO-KOMPSAT-2A/Advanced Metrological Imager (GK-2A/AMI) and the European Centre for Medium-range Weather Forecasts reanalysis (ERA5) data. The results showed that the net fluxes for the TOA and surface were −4.09 W·m−2 and −8.24 W·m−2, respectively. Thus, the net flux difference of 4.15 W·m−2 between TOA and surface implied atmospheric warming. These results, produced by GK-2A/AMI, were well-matched with the ERA5 data. However, they varied with surface characteristics; the atmosphere over ocean areas warmed because of the large amounts of longwave radiation emitted from surfaces, while the atmosphere over the plain area was relatively balanced and the atmosphere over the mountain area was cooled because large amount of longwave radiation was emitted to space. Although the GK2A/AMI radiative products used for this study have not yet been sufficiently compared with surface observation data, and the period of data used was only one year, they were highly correlated with the CERES (Clouds and the Earth’s Radiant Energy System of USA), HIMAWARI/AHI (Geostationary Satellite of Japan), and ERA5 data. Therefore, if more GK-2A/AMI data are accumulated and analyzed, it could be used for the analysis of radiant energy budget and climate research for East Asia, and it will be an opportunity to greatly increase the utilization of total meteorological products of 52 types, including radiative products.

Funder

National Research Foundation of Korea grant from the Korean Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3