Sensitivity of Satellite-Derived Tropospheric Temperature Trends to the Diurnal Cycle Adjustment

Author:

Mears Carl A.1,Wentz Frank J.1

Affiliation:

1. Remote Sensing Systems, Santa Rosa, California

Abstract

Abstract Temperature sounding microwave radiometers flown on polar-orbiting weather satellites provide a long-term, global-scale record of upper-atmosphere temperatures, beginning in late 1978 and continuing to the present. The focus of this paper is the midtropospheric measurements made by the Microwave Sounding Unit (MSU) channel 2 and the Advanced Microwave Sounding Unit (AMSU) channel 5. Previous versions of the Remote Sensing Systems (RSS) dataset have used a diurnal climatology derived from general circulation model output to remove the effects of drifting local measurement time. This paper presents evidence that this previous method is not sufficiently accurate and presents several alternative methods to optimize these adjustments using information from the satellite measurements themselves. These are used to construct a number of candidate climate data records using measurements from 15 MSU and AMSU satellites. The new methods result in improved agreement between measurements made by different satellites at the same time. A method is chosen based on an optimized second harmonic adjustment to produce a new version of the RSS dataset, version 4.0. The new dataset shows substantially increased global-scale warming relative to the previous version of the dataset, particularly after 1998. The new dataset shows more warming than most other midtropospheric data records constructed from the same set of satellites. It is also shown that the new dataset is consistent with long-term changes in total column water vapor over the tropical oceans, lending support to its long-term accuracy.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3