Diffusion Height and Order of Sulfur Dioxide and Bromine Monoxide Plumes from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption

Author:

Li Qidi12,Qian Yuanyuan12,Luo Yuhan1ORCID,Cao Le3,Zhou Haijin1,Yang Taiping1ORCID,Si Fuqi1,Liu Wenqing1

Affiliation:

1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. University of Science and Technology of China, Hefei 230026, China

3. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

A violent volcanic eruption attracting considerable attention occurred on 15 January 2022 near the South Pacific island nation of Tonga. To investigate its environmental impact, we retrieved the sulfur dioxide (SO2) and bromine monoxide (BrO) vertical column densities of environmental trace gas monitoring instrument 2 (EMI-2) based on the differential optical absorption spectroscopy algorithm. The results showed westward and southeastward transport of principal parts of SO2 and BrO plumes, respectively, from the Hunga Tonga–Hunga Ha’apai (HTHH) eruption. On 15 January, most of the released SO2 entered the stratosphere (above 20 km) directly and spread rapidly westward (approximately 30 m/s). In contrast, the principal portion of the BrO spread southeastward slowly (approximately 10 m/s) within the 8–15 km altitude layer on 16 January. Our research results also suggest that during the HTHH eruption, BrO was released from the magmatic melt later than SO2. The total SO2 emissions from this eruption were approximately 0.24 Tg. The majority of SO2 and BrO plumes were transported within the Southern Hemisphere. This study is an important extension to the empirical database of volcanological and magmatic degassing research.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3