Upregulation of p75NTR by Histone Deacetylase Inhibitors Sensitizes Human Neuroblastoma Cells to Targeted Immunotoxin-Induced Apoptosis

Author:

Dedoni SimonaORCID,Olianas Alessandra,Manconi Barbara,Collu Maria,Tuveri Barbara,Vincis Maria Elena,Olianas Maria C.,Onali Pierluigi

Abstract

Histone deacetylase (HDAC) inhibitors are novel chemotherapy agents with potential utility in the treatment of neuroblastoma, the most frequent solid tumor of childhood. Previous studies have shown that the exposure of human neuroblastoma cells to some HDAC inhibitors enhanced the expression of the common neurotrophin receptor p75NTR. In the present study we investigated whether the upregulation of p75NTR could be exploited to render neuroblastoma cells susceptible to the cytotoxic action of an anti-p75NTR antibody conjugated to the toxin saporin-S6 (p75IgG-Sap). We found that two well-characterized HDAC inhibitors, valproic acid (VPA) and entinostat, were able to induce a strong expression of p75NTR in different human neuroblastoma cell lines but not in other cells, with entinostat, displaying a greater efficacy than VPA. Cell pretreatment with entinostat enhanced p75NTR internalization and intracellular saporin-S6 delivery following p75IgG-Sap exposure. The addition of p75IgG-Sap had no effect on vehicle-pretreated cells but potentiated the apoptotic cell death that was induced by entinostat. In three-dimensional neuroblastoma cell cultures, the subsequent treatment with p75IgG-Sap enhanced the inhibition of spheroid growth and the impairment of cell viability that was produced by entinostat. In athymic mice bearing neuroblastoma xenografts, chronic treatment with entinostat increased the expression of p75NTR in tumors but not in liver, kidney, heart, and cerebellum. The administration of p75IgG-Sap induced apoptosis only in tumors of mice that were pretreated with entinostat. These findings define a novel experimental strategy to selectively eliminate neuroblastoma cells based on the sequential treatment with entinostat and a toxin-conjugated anti-p75NTR antibody.

Funder

Sardegna Ricerche

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3