Melatonin-Induced Postconditioning Suppresses NMDA Receptor through Opening of the Mitochondrial Permeability Transition Pore via Melatonin Receptor in Mouse Neurons

Author:

Furuta Takanori,Nakagawa IchiroORCID,Yokoyama Shohei,Morisaki Yudai,Saito YasuhikoORCID,Nakase HiroyukiORCID

Abstract

Mitochondrial membrane potential regulation through the mitochondrial permeability transition pore (mPTP) is reportedly involved in the ischemic postconditioning (PostC) phenomenon. Melatonin is an endogenous hormone that regulates circadian rhythms. Its neuroprotective effects via mitochondrial melatonin receptors (MTs) have recently attracted attention. However, details of the neuroprotective mechanisms associated with PostC have not been clarified. Using hippocampal CA1 pyramidal cells from C57BL mice, we studied the involvement of MTs and the mPTP in melatonin-induced PostC mechanisms similar to those of ischemic PostC. We measured changes in spontaneous excitatory postsynaptic currents (sEPSCs), intracellular calcium concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents after ischemic challenge, using the whole-cell patch-clamp technique. Melatonin significantly suppressed increases in sEPSCs and intracellular calcium concentrations. The NMDAR currents were significantly suppressed by melatonin and the MT agonist, ramelteon. However, this suppressive effect was abolished by the mPTP inhibitor, cyclosporine A, and the MT antagonist, luzindole. Furthermore, both melatonin and ramelteon potentiated depolarization of mitochondrial membrane potentials, and luzindole suppressed depolarization of mitochondrial membrane potentials. This study suggests that melatonin-induced PostC via MTs suppressed the NMDAR that was induced by partial depolarization of mitochondrial membrane potential by opening the mPTP, reducing excessive release of glutamate and inducing neuroprotection against ischemia-reperfusion injury.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3