Biomimetic Hierarchical Nanocomposite Hydrogels: From Design to Biomedical Applications

Author:

Yao Zhi,Xu Jiankun,Shen JunORCID,Qin Ling,Yuan WeihaoORCID

Abstract

Natural extracellular matrix (ECM) is highly heterogeneous and anisotropic due to the existence of biomacromolecule bundles and pores. Hydrogels have been proposed as ideal carriers for therapeutic cells and drugs in tissue engineering and regenerative medicine. However, most of the homogeneous and isotropic hydrogels cannot fully emulate the hierarchical properties of natural ECM, including the dynamically spatiotemporal distributions of biochemical and biomechanical signals. Biomimetic hierarchical nanocomposite hydrogels have emerged as potential candidates to better recapitulate natural ECM by introducing various nanostructures, such as nanoparticles, nanorods, and nanofibers. Moreover, the nanostructures in nanocomposite hydrogels can be engineered as stimuli-responsive actuators to realize the desirable control of hydrogel properties, thereby manipulating the behaviors of the encapsulated cells upon appropriate external stimuli. In this review, we present a comprehensive summary of the main strategies to construct biomimetic hierarchical nanocomposite hydrogels with an emphasis on the rational design of local hydrogel properties and their stimuli-responsibility. We then highlight cell fate decisions in engineered nanocomposite niches and their recent development and challenges in biomedical applications.

Funder

RGC Areas of Excellence

RGC Theme-based Research Scheme

Key-Area Research and Development Program of Guangdong Province

NSFC/RGC Joint Research Scheme

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in injectable nanocomposite hydrogels;Nano-Structures & Nano-Objects;2024-09

2. Inorganic-Nanomaterial-Composited Hydrogel Dressings for Wound Healing;Journal of Composites Science;2024-01-26

3. Nanocellulose‐based soft actuators and their applications;Journal of Polymer Science;2023-08-24

4. Polymeric Theragnostic Nanoplatforms for Bone Tissue Engineering;Journal of Nanotheranostics;2023-07-20

5. PGS/Gelatin Nanocomposite Electrospun Wound Dressing;Journal of Composites Science;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3