Bias Voltage Dependence of Sensing Characteristics in Tunneling Magnetoresistance Sensors

Author:

Wiśniowski PiotrORCID,Nawrocki Maciej,Wrona Jerzy,Cardoso SusanaORCID,Freitas Paulo. P.

Abstract

One of the characteristic features of tunneling magnetoresistance (TMR) sensors is a strong influence of bias voltage on tunneling current. Since fundamental sensing characteristics of the sensors are primarily determined by the tunneling current, the bias voltage should impact these characteristics. Previous research has indeed showed the influence of the bias voltage on the magnetic field detection and sensitivity. However, the effect has not been investigated for nonlinearity and hysteresis and the influence of bias voltage polarity has not yet been addressed. Therefore, this paper systematically investigates the dependence of field sensitivity, nonlinearity, hysteresis and magnetic field detection of CoFeB/MgO/CoFeB-based magnetoresistance sensors on bias voltage magnitude and polarity. The sensitivity and field detection of all sensors improved significantly with the bias, whereas the nonlinearity and hysteresis deteriorated. The sensitivity increased considerably (up to 32 times) and linearly with bias up to 0.6 V. The field detection also decreased substantially (up 3.9 times) with bias and exhibited the minimum values for the same magnitude under both polarities. Significant and linear increases with bias were also observed for nonlinearity (up to 26 times) and hysteresis (up to 33 times). Moreover, not only the voltage magnitude but also the polarity had a significant effect on the sensing characteristics. This significant, linear and simultaneous effect of improvement and deterioration of the sensing characteristics with bias indicates that both bias voltage magnitude and polarity are key factors in the control and modification of these characteristics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3