An Infrastructure-Free Indoor Localization Algorithm for Smartphones

Author:

Wang Qu,Luo Haiyong,Men Aidong,Zhao Fang,Huang Yan

Abstract

Accurate indoor positioning technology provides location-based service for a variety of applications. However, most existing indoor localization approaches (e.g., Wi-Fi and Bluetooth-based methods) rely heavily on positioning infrastructure, which prevents their large-scale deployment and limits the range at which they are applicable. Here, we proposed an infrastructure-free indoor positioning and tracking approach, termed LiMag, which used ubiquitous magnetic field and ambient lights (e.g., fluorescent, incandescent, and light-emitting diodes (LEDs)) without containing modulated information. We conducted an in-depth study on both the advantages and the challenges in leveraging magnetic field and ambient light intensity for indoor localization. Based on the insights from this study, we established a hybrid observation model that took full advantage of both the magnetic field and ambient light signals. To address the low discernibility of the hybrid observation model, LiMag first generated a single-step fingerprint model by vectorizing consecutive hybrid observations within each step. In order to accurately track users, a lightweight single-step tracking algorithm based on the single-step fingerprints and the particle filter framework was designed. LiMag leveraged the walking information of users and several single-step fingerprints to generate long trajectory fingerprints that exhibited much higher location differentiation ability than the single-step fingerprint. To accelerate particle convergence and eliminate the accumulative error of single-step tracking algorithm, a long trajectory calibration scheme based on long trajectory fingerprints was also introduced. An undirected weighted graph model was constructed to decrease the computational overhead resulting from this long trajectory matching. In addition to typical indoor scenarios including offices, shopping malls and parking lots, we also conducted experiments in more challenging scenarios, including large open-plan areas as well as environments characterized by strong sunlight. Our proposed algorithm achieved a 75th percentile localization accuracy of 1.8 m and 2.2 m, respectively, in the office and shopping mall tested. In conclusion, our LiMag algorithm provided location-based service of infrastructure-free with significantly improved localization accuracy and coverage, as well as satisfactory robustness inside complex indoor environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3