An Improved Pedestrian Navigation Method Based on the Combination of Indoor Map Assistance and Adaptive Particle Filter

Author:

Wang Zhengchun,Xing Li,Xiong Zhi,Ding Yiming,Sun Yinshou,Shi Chenfa

Abstract

At present, the traditional indoor pedestrian navigation methods mainly include pedestrian dead reckoning (PDR) and zero velocity update (ZUPT), but these methods have the problem of error divergence during long time navigation. To solve this problem, under the condition of not relying on the active sensing information, combined with the characteristics of particles “not going through the wall” in the indoor map building structure, an improved adaptive particle filter (PF) based on the particle “not going through the wall” method is proposed for pedestrian navigation in this paper. This method can restrain the error divergence of the navigation system for a long time. Compared to the traditional pedestrian navigation method, based on the combination of indoor map assistance (MA) and particle filter, a global search method based on indoor MA is used to solve the indoor positioning problem under the condition of the unknown initial position and heading. In order to solve the problem of low operation efficiency caused by the large number of particles in PF, a calculation method of adaptively adjusting the number of particles in the process of particle resampling is proposed. The results of the simulation data and actual test data show that the proposed indoor integrated positioning method can effectively suppress the error divergence problem of the navigation system. Under the condition that the total distance is more than 415.44 m in the indoor environment of about 2600 m2, the average error and the maximum error of the position are less than two meters relative to the reference point.

Funder

National Natural Science Foundation of China

The advanced research project of the equipment development

National Basic Research Program

Natural Science Fund of Jiangsu Province

Aeronautic Science Foundation of China

Fundamental Research Funds for the Central Universities

Shanghai Aerospace Science and Technology Innovation Fund

Introduction plan of high end experts

111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3