Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland

Author:

Butlewski Krystian

Abstract

The importance of developing efficient and environmentally friendly means of biomass conversion into bioenergy, biofuels, and valuable products is currently high in Poland. Accordingly, herein, two new energy and biofuel units are proposed, namely, POLpec and POLbp, which are used as reference sources for comparing energy consumption and biofuel production in other countries or regions in the world. One POLpec equals 4400 PJ (195.1 Mtoe), reflecting the annual primary energy consumption of Poland in 2020. Meanwhile, one POLbp equals 42 PJ (1.0 Mtoe), referring to the annual production of biofuels in Poland in 2020. Additionally, a new import–export coefficient β is proposed in the current study, which indicates the relationship between the import and export of an energy carrier. More specifically, the potential of biomass and organic waste to be converted into energy, biofuels, and valuable products has been analysed for the rural areas of Poland. Results show that the annual biomass and organic waste potential is approximately 245 PJ (5.9 Mtoe). Finally, the concept of a biomass and organic waste refinery plant is proposed based on the locally available organic materials in rural areas. In particular, two models of biomass refinery plants are defined, namely, the Input/Output and Modular models. A four-module model is presented as a concept for building a refinery plant at the Institute of Technology and Life Sciences—National Research Institute in Poznan, Poland. The four modules include anaerobic digestion, gasification, transesterification, and alcoholic fermentation. The primary reason for combining different biomass conversion technologies is to reduce the cost of biomass products, which, currently, are more expensive than those obtained from oil and natural gas.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3