Abstract
Due to the need to diversify energy sources and transform the energy system and its decarbonization, new paths for obtaining raw materials are being sought. One of the potential options is to increase the use of grasses’ share in bioenergy production, which has a significant area potential. However, the diversified chemical composition of grasses and their anatomical heterogeneity mean that, between the various cultivars and species, the parameters determining their energetic usefulness may differ significantly, hence the key is to know the appropriate parameters at the variety level of a given species in order to effectively carry out the combustion process. In this experiment, a total of 23 varieties of seven grass species (Kentucky bluegrass (Poa pratensis L.), Red Fescue (Festuca rubra L.), Perennial Ryegrass (Lolium perenne L.), Meadow Fescue (Festuca pratensis Huds.), Timothy (Phleum pratense L.), Common Bent (Agrostis capillaris L.), Sheep Fescue (Festuca ovina L.), which had not yet been evaluated in terms of energy utilization, were tested. Proximate analysis showed the average ash content was in the range of 5.73–8.31%, the content of volatile matter in the range of 70.99–82.29% and the content of fixed carbon in the range of 5.96–17.19%. Higher heating value and lower heating value of grasses ranged from 16,548–18,616 kJ∙kg−1, 15,428–17,453 kJ∙kg−1, respectively. The Sheep Fescue turned out to be the most useful species for combustion. It has been shown that there may be statistically significant differences in the parameters determining their combustion suitability between the various varieties of a given species of grass. Therefore the major finding of this work shows that it is necessary to need to know theparameters of a given variety is necessary to optimize the combustion process and maintain the full energy efficiency of the system (especially lower heating value).
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献