Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector

Author:

Montenon Alaric ChristianORCID,Meligy Rowida

Abstract

The modelling of Linear Fresnel Collectors (LFCs) is crucial in order to predict accurate performance for annual yields and to define proper commands to design the suitable controller. The ISO 9806 modelling, applied to thermal collectors, presents some gaps especially with concentration collectors including LFCs notably due to the factorisation of the incidence angle modifiers and the fact that they are considered symmetric around the south meridian. The present work details the use of two alternative modellings methodologies based on recorded experimental data on the solar system installed at the Cyprus Institute, in the outskirts of Nicosia, Cyprus. The first modelling is the RealTrackEff, which is an improved ISO9806 modelling, and the second is constructed using the CARNOT blockset in MATLAB/Simulink. Both models include all the elements of the heat transfer fluid loop, i.e., mineral oil, with a tank and a heat-exchanger. First, the open loop’s studies demonstrated that the root mean square on temperature is 1 °C with the RealTrackEff; 2.9 °C with the CARNOT and 6.3 °C with the ISO9806 in comparison to the experimental data. Then, a PID control is applied on the experimental values in order to estimate the impact on the outlet temperature on the absorber and on power generation. Results showed that the error on the estimation of the heat absorbed reaches 32%.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3