Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector

Author:

Guarino StefaniaORCID,Catrini PietroORCID,Buscemi Alessandro,Lo Brano Valerio,Piacentino AntonioORCID

Abstract

Energy consumed for air conditioning in residential and tertiary sectors accounts for a large share of global use. To reduce the environmental impacts burdening the covering of such demands, the adoption of renewable energy technologies is increasing. In this regard, this paper evaluates the energy and environmental benefits achievable by integrating a dish-Stirling concentrator into energy systems used for meeting the air conditioning demand of an office building. Two typical reference energy plants are assumed: (i) a natural gas boiler for heating purposes and air-cooled chillers for the cooling periods, and (ii) a reversible heat pump for both heating and cooling. For both systems, a dish-Stirling concentrator is assumed to operate first in electric-mode and then in a cogenerative-mode. Detailed models are adopted for plant components and implemented in the TRNSYS environment. Results show that when the concentrator is operating in electric-mode the electricity purchased from the grid decreases by about 72% for the first plant, and 65% for the second plant. Similar reductions are obtained for CO2 emissions. Even better performance may be achieved in the case of the cogenerative-mode. In the first plant, the decrease in natural gas consumption is about 85%. In the second plant, 66.7% is the percentage increase in avoided electricity purchase. The integration of the dish-Stirling system allows promising energy-saving and reduction in CO2 emissions. However, both a reduction in capital cost and financial support are needed to encourage the diffusion of this technology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leontief Model-Based Research on the Input Structure of Three Industries: A Markowitz Optimization Perspective;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. 3E assessment of a solar-driven reverse osmosis plant for seawater desalination in a small island of the Mediterranean Sea;Energy Reports;2023-11

3. Thermodynamic-based method for supporting design and operation of thermal grids in presence of distributed energy producers;Journal of Sustainable Development of Energy, Water and Environment Systems;2023-09

4. Numerical analysis of a concentrating solar power plant integrating solid thermal storage systems for biofuel production;2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2023-06-06

5. Integrated Solar Thermal Systems;Energies;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3