Expansion Properties and Diffusion of Blowing Agent for Vinylidene Chloride Copolymer Thermally Expandable Microspheres

Author:

Xie GuimingORCID,Wang Zhiyang,Bao Yongzhong

Abstract

Vinylidene chloride copolymer microspheres were synthesized by in situ suspension copolymerization of vinylidene chloride (VDC), methyl methacrylate (MMA), and/or acrylonitrile (AN) in the presence of a paraffin blowing agent. The effects of shell polymer properties including compositions, glass transition temperature (Tg), crosslinking degree, blowing agent type, and encapsulation ratio (Er) on the expansion properties of copolymer microspheres were investigated. Moreover, the diffusion properties of blowing agent in copolymer microspheres were studied. The results show that VDC-MMA-AN copolymer microspheres exhibited excellent expansion properties, and the volume expansion ratio (Ev) and the apparent density were decreased over 40 times, but it was difficult to expand for the VDC-MMA copolymer microspheres. In addition, the moderately crosslinked inside of the polymer shell enhanced the Ev more than 30 and the stable expansion temperature range (Tr) was about 30 °C by adding 0.2–0.4 wt% of divinyl benzene. The Tg of the shell polymer must be higher than the boiling point of the blowing agent as a prerequisite; the lower the boiling point of the blowing agent, the higher the internal gas pressure driven microsphere expansion, and the wider the Tr. By increasing the Er of blowing agent improved the Ev of the microspheres. The diffusion of pentane blowing agent in VDC-MMA-AN copolymer microspheres were divided into Fick diffusion and non-Fick diffusion.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3