Molecular Dynamics Simulation on Thin-Film Lubrication of a Mixture of Three Alkanes

Author:

Du RunORCID,Zhang Anying,Du Zhihua,Zhang Xiaoyu

Abstract

We used the COMPASS forcefield to perform molecular dynamics (MD) simulation of a mixture composed of three alkanes as the lubricant for the thin-film lubrication. The viscosity of the lubrication film in the non-working state, the final film thickness, and density distribution were investigated. The results reveal that the viscosity error among different initial film thicknesses in the non-working state is within 5%, which confirms the applicability of the model and the forcefield. The viscosity decreases oscillating as temperature increases. Whatever the initial film thickness is, the film thickness change rate with respect to pressure load is almost the same. When pressure increases, the density peaks increase. As the initial film thickness increases, the normalized thicknesses of adsorption and ordered layers decrease. In nanoscale, the density predicted by the MD simulation is higher than the prediction of the Tait equation, even if the adsorption layers is excluded.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3