Affiliation:
1. Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA
2. Department of Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA
Abstract
Delivering vaccines to the posterior nose has been proposed to induce mucosal immunization. However, conventional nasal devices often fail to deliver sufficient doses to the posterior nose. This study aimed to develop a new delivery protocol that can effectively deliver sprays to the caudal turbinate and nasopharynx. High-speed imaging was used to characterize the nasal spray plumes. Three-dimensional-printed transparent nasal casts were used to visualize the spray deposition within the nasal airway, as well as the subsequent liquid film formation and translocation. Influencing variables considered included the device type, delivery mode, release angle, flow rate, head position, and dose number. Apparent liquid film translocation was observed in the nasal cavity. To deliver sprays to the posterior nose, the optimal release angle was found to be 40° for unidirectional delivery and 30° for bidirectional delivery. The flow shear was the key factor that mobilized the liquid film. Both the flow shear and the head position were important in determining the translocation distance. A supine position and dual-dose application significantly improved delivery to the nasopharynx, i.e., 31% vs. 0% with an upright position and one-dose application. It is feasible to effectively deliver medications to the posterior nose by leveraging liquid film translocation for mucosal immunization.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献