Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers

Author:

Ibanez Kristen R.1ORCID,Huang Tzu-Ting1ORCID,Lee Jung-Min1

Affiliation:

1. Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

The PI3K signaling pathway plays an essential role in cancer cell proliferation and survival. PI3K pathway inhibitors are now FDA-approved as a single agent treatment or in combination for solid tumors such as renal cell carcinoma or breast cancer. However, despite the high prevalence of PI3K pathway alterations in gynecological cancers and promising preclinical activity in endometrial and ovarian cancer models, PI3K pathway inhibitors showed limited clinical activity in gynecological cancers. In this review, we provide an overview on resistance mechanisms against PI3K pathway inhibitors that limit their use in gynecological malignancies, including genetic alterations that reactivate the PI3K pathway such as PIK3CA mutations and PTEN loss, compensatory signaling pathway activation, and feedback loops causing the reactivation of the PI3K signaling pathway. We also discuss the successes and limitations of recent clinical trials aiming to address such resistance mechanisms through combination therapies.

Funder

Intramural Research Program of Center for Cancer Research, National Cancer Institute, National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3