Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application

Author:

Kayama Masazumi1ORCID,Kikuchi Satoshi2,Uemura Akira1,Takahashi Masayoshi1

Affiliation:

1. Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan

2. Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Toyohira, Sapporo 062-8516, Japan

Abstract

To establish a short rotation coppice (SRC) system in the temperate region of East Asia, planting was conducted for cuttings from seven species, including Salix eriocarpa, S. gilgiana, S. gracilistyla, S. integra, S. sachalinensis, S. serissaefolia, and S. subfragilis, with wide distribution in eastern Japan. During cultivation, cheap compost derived from swine manure and containing high concentrations of various nutrients was added. Three treatment groups, including control, low manure (5 Mg ha−1), and high manure (10 Mg ha−1) treatments, were established, and seven willows were grown for two complete growing seasons to obtain the clone density of 10,000 cuttings ha−1. The manure treatments accelerated the growth of all the willow species after two growing seasons. The averages of annual biomass production of seven willows grown under the control, low manure, and high manure treatments were 0.2 Mg ha−1yr−1, 5.3 Mg ha−1yr−1, and 8.5 Mg ha−1yr−1, respectively. By comparing with the biomasses of seven willows, the largest annual biomass production rates of 14.1 and 13.7 Mg ha−1yr−1 were observed in the high manure treatments of S. sachalinensis and S. subfragilis, respectively. For two species under the high manure treatment, S. sachalinensis had the thickest shoots, and S. subfragilis had the tallest shoots. These growth characteristics of S. sachalinensis and S. subfragilis originate from their high biomass production. Overall, these results suggest that S. sachalinensis and S. subfragilis are potentially feasible candidates for the SRC system in temperate regions of East Asia.

Funder

Forestry and Forest Products Research Institute

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3