Willow Short-Rotation Coppice as Model System for Exploring Ecological Theory on Biodiversity–Ecosystem Function

Author:

Weih MartinORCID,Glynn CarolynORCID,Baum ChristelORCID

Abstract

Plantations of willow (Salix spp.) are today grown as short-rotation coppice (SRC) for the sustainable production of biomass. While developing these production systems in the past, much ecological knowledge on plant–plant, plant–environment and trophic interactions has been generated. This knowledge can contribute to the further development of biodiversity–ecosystem function (BEF) theory, which frequently lacks a sound understanding of the complex mechanisms behind the observed patterns of diversity-productivity relationships. Thus, willow SRC systems are suitable models to explore BEF theory; they are simple enough to allow the study of the complex ecological mechanisms involved and they have many similarities to grassland systems in which much of recent BEF theory development has been achieved. This paper briefly reviews the current observational and mechanistic knowledge on diversity–productivity relationships in willow SRC, as well as the most important above- and below-ground trophic interactions that are likely to affect them. If the available knowledge is integrated and combined with further experimental work targeting mechanisms behind patterns, research on willow SRC as a model offers a great opportunity for filling the gaps in the understanding what presently hampers the development of predictive BEF theory.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

Reference89 articles.

1. Poplars and Willows of the World, With Emphasis on Silviculturally Important Species;Dickmann,2014

2. Sustainable willow production for biofuel use;Weih,2019

3. Manual for SRC Willow Growers;Larsson,2007

4. Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone

5. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3