Variety and Site Drive Salix Mixture Effects on Soil Organic Matter Chemistry and Soil Carbon Accumulation

Author:

Jensen Joel1ORCID,Fransson Petra2,Baum Christel3ORCID,Leinweber Peter3,Eckhardt Kai-Uwe3ORCID,Weih Martin1ORCID

Affiliation:

1. Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE-75007 Uppsala, Sweden

2. Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden

3. Faculty of Agricultural and Environmental Sciences, Soil Science, University of Rostock, Justus-von-Liebig Weg 6, DE-18057 Rostock, Germany

Abstract

Soil organic matter (SOM) is essential for nutrient cycling and soil carbon (C) accumulation, both of which are heavily influenced by the quality and quantity of plant litter. Since SOM dynamics in relation to plant diversity are poorly understood, we investigated the effects of willow variety and mixture, and site on the soil C stocks, SOM chemical composition and thermal stability. Using pyrolysis-field ionization mass spectrometry (Py-FIMS), a method of stepwise thermal degradation in ultrahigh vacuum combined with soft ionization in a high electric field, followed by mass-spectrometric separation and detection of molecular ions, we analyzed SOM in the top 10 cm of soil from two 7-year-old experimental sites in Germany and Sweden. Monocultures and mixtures of two willow varieties (Salix spp.) belonging to different species were grown at the experimental plots. Overall, site had the strongest effect on SOM quality. The results showed significant variability across sites for willow identity and mixture effects on C accumulation and SOM chemistry. In the German site (Rostock), yearly soil C accumulation was higher (p < 0.05) for variety ‘Loden’ (1.0 Mg C ha−1 year−1) compared to ‘Tora’ (0.5 Mg C ha−1 year−1), whilst in the Swedish site (Uppsala), both varieties exhibited similar soil C accumulation rates of around 0.6 Mg C ha−1 year−1. Willow variety identity significantly affected SOM quality at both sites, while mixing had minor effects. Our findings emphasize the significance of site-specific context and variety and species identity in shaping soil C accumulation in willow plantations.

Funder

The Swedish Research Council for Environment, Agricultural sciences and Spatial Planning

Swedish Energy Agency

Deutsche Forschungsgemeinschaft

Swedish Research Council FORMAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3