Abstract
Background and Objectives: Assessment of RANTES level and concentrations of inflammatory cytokines: programmed death ligand 1 (PD-L1), interferon gamma IFN-γ, tumor necrosis factor alpha (TNF-α), transforming growht factor β (TGF-β) (and angiogenesis factors: vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor C (VEGF C) in tumor and margin tissues of colorectal cancer (CRC,) and evaluation of RANTES influence on histopathological parameters (microvessel density (MVD), budding, tumor-infiltrating lymphocytes (TILs)), in relation to patients’ clinical features. Materials and Methods: The study used 49 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C, we used the commercially available enzyme-linked immunosorbent assay kit. Additionally, RANTES and PD-L1 expression was assessed with the use of IHC staining in both tumor cells and TILS in randomly selected cases. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope. Results: We found significantly higher levels of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C in the tumor in comparison with the margin. The RANTES tumor levels correlated significantly with those of PD-L1, TNF-α, TGF-β, VEGF-A, and VEGF-C. The RANTES margin levels were significantly associated with the margin levels of all proteins investigated—PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C. Additionally, we observed RANTES- and PD-L1-positive immunostaining in TILs. In a group of 24 specimens, 6 different CRC tumors were positive for RANTES and PD-L1 immunostaining. The IFN-gamma concentration in both tumor and margin and TGF-β in tumor correlated with TILs. TILs were negatively associated with the patients’ disease stage and N parameter. Conclusions: RANTES activity might be associated with angiogenesis, lymphogenesis, and immune escape in CRC. RANTES is an important chemokine that is a part of the chemokine–cytokine network involved in the modulation of TME composition in CRC. Further research may verify which processes are responsible for the associations observed in the study.