Engineered Tumor–Immune Microenvironment On A Chip to Study T Cell–Macrophage Interaction in Breast Cancer Progression

Author:

Manoharan Twinkle Jina Minette1ORCID,Ravi Kalpana1ORCID,Suresh Abhirami P.23,Acharya Abhinav P.23,Nikkhah Mehdi14ORCID

Affiliation:

1. School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA

2. School for Engineering of Matter Transport and Energy (SEMTE) Arizona State University Tempe AZ 85287 USA

3. Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA

4. Biodesign Virginia G. Piper Center for Personalized Diagnostics Arizona State University Tempe AZ 85287 USA

Abstract

AbstractEvolving knowledge about the tumor–immune microenvironment (TIME) is driving innovation in designing novel therapies against hard‐to‐treat breast cancer. Targeting the immune components of TIME has emerged as a promising approach for cancer therapy. While recent immunotherapies aim at restoring antitumor immunity, counteracting tumor escape remains challenging. Hence there is a pressing need to better understand the complex tumor–immune crosstalk within TIME. Considering this imperative, this study aims at investigating the crosstalk between the two abundant immune cell populations within the breast TIME—macrophages and T cells, in driving tumor progression using an organotypic 3D in vitro tumor‐on‐a‐chip (TOC) model. The TOC features distinct yet interconnected organotypic tumor and stromal entities. This triculture platform mimics the complex TIME, embedding the two immune populations in a suitable 3D matrix. Analysis of invasion, morphometric measurements, and flow cytometry results underscores the substantial contribution of macrophages to tumor progression, while the presence of T cells is associated with a deceleration in the migratory behavior of both cancer cells and macrophages. Furthermore, cytokine analyses reveal significant upregulation of leptin and RANTES (regulated on activation, normal T Cell expressed and secreted) in triculture. Overall, this study highlights the complexity of TIME and the critical role of immune cells in cancer progression.

Funder

National Science Foundation

National Institutes of Health

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3