Abstract
Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the patient’s illness cycle, assist with diagnosis, and offer appropriate therapy alternatives. Each approach employed may address one or more AI problems, such as segmentation, prediction, recognition, classification, and regression. However, the amount of AI-featured research on Inherited Retinal Diseases (IRDs) is currently limited. Thus, this study aims to examine artificial intelligence approaches used in managing Inherited Retinal Disorders, from diagnosis to treatment. A total of 20,906 articles were identified using the Natural Language Processing (NLP) method from the IEEE Xplore, Springer, Elsevier, MDPI, and PubMed databases, and papers submitted from 2010 to 30 October 2021 are included in this systematic review. The resultant study demonstrates the AI approaches utilized on images from different IRD patient categories and the most utilized AI architectures and models with their imaging modalities, identifying the main benefits and challenges of using such methods.
Funder
Fundação para a Ciência e Tecnologia
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献