Deep Learning in Neovascular Age-Related Macular Degeneration

Author:

Borrelli Enrico12ORCID,Serafino Sonia12,Ricardi Federico12,Coletto Andrea12ORCID,Neri Giovanni12ORCID,Olivieri Chiara12ORCID,Ulla Lorena12,Foti Claudio12,Marolo Paola12ORCID,Toro Mario Damiano3ORCID,Bandello Francesco45ORCID,Reibaldi Michele12ORCID

Affiliation:

1. Division of Ophthalmology, Department of Surgical Sciences, University of Turin, Via Verdi, 8, 10124 Turin, Italy

2. Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy

3. Eye Clinic, Public Health Department, University of Naples Federico II, 80138 Naples, Italy

4. Department of Ophthalmology, Vita-Salute San Raffaele University, 20132 Milan, Italy

5. IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy

Abstract

Background and objectives: Age-related macular degeneration (AMD) is a complex and multifactorial condition that can lead to permanent vision loss once it progresses to the neovascular exudative stage. This review aims to summarize the use of deep learning in neovascular AMD. Materials and Methods: Pubmed search. Results: Deep learning has demonstrated effectiveness in analyzing structural OCT images in patients with neovascular AMD. This review outlines the role of deep learning in identifying and measuring biomarkers linked to an elevated risk of transitioning to the neovascular form of AMD. Additionally, deep learning techniques can quantify critical OCT features associated with neovascular AMD, which have prognostic implications for these patients. Incorporating deep learning into the assessment of neovascular AMD eyes holds promise for enhancing clinical management strategies for affected individuals. Conclusion: Several studies have demonstrated effectiveness of deep learning in assessing neovascular AMD patients and this has a promising role in the assessment of these patients.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3