DIRT: The Dacus Image Recognition Toolkit

Author:

Kalamatianos Romanos,Karydis IoannisORCID,Doukakis Dimitris,Avlonitis Markos

Abstract

Modern agriculture is facing unique challenges in building a sustainable future for food production, in which the reliable detection of plantation threats is of critical importance. The breadth of existing information sources, and their equivalent sensors, can provide a wealth of data which, to be useful, must be transformed into actionable knowledge. Approaches based on Information Communication Technologies (ICT) have been shown to be able to help farmers and related stakeholders make decisions on problems by examining large volumes of data while assessing multiple criteria. In this paper, we address the automated identification (and count the instances) of the major threat of olive trees and their fruit, the Bactrocera Oleae (a.k.a. Dacus) based on images of the commonly used McPhail trap’s contents. Accordingly, we introduce the “Dacus Image Recognition Toolkit” (DIRT), a collection of publicly available data, programming code samples and web-services focused at supporting research aiming at the management the Dacus as well as extensive experimentation on the capability of the proposed dataset in identifying Dacuses using Deep Learning methods. Experimental results indicated performance accuracy (mAP) of 91.52% in identifying Dacuses in trap images featuring various pests. Moreover, the results also indicated a trade-off between image attributes affecting detail, file size and complexity of approaches and mAP performance that can be selectively used to better tackle the needs of each usage scenario.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3