Measurement of Dilational Modulus of an Adsorbed BSA Film Using Pendant Bubble Tensiometry: From a Clean Interface to Saturation

Author:

Hussain Siam1,Rivas Johann Eduardo Maradiaga1,Tseng Wen-Chi1,Tsay Ruey-Yug2,Noskov Boris3,Loglio Giuseppe4ORCID,Lin Shi-Yow1

Affiliation:

1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

2. Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, 155, Sec. 2, Linong St., Taipei 112, Taiwan

3. Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 Saint Petersburg, Russia

4. Italian National Research Council—CNR, Institute of Condensed Matter Chemistry and Technologies for Energy, 16149 Genoa, Italy

Abstract

Two open issues on the measurement of the dilational modulus (E) for an adsorbed protein film during the adsorption process have been unacknowledged: how E varies during the adsorption and the length of time needed to attain a stable E value. A new approach for detecting the E variation from a clean air–water interface to saturated film and estimating the time needed to reach a saturated state was proposed. A pendant bubble tensiometer was utilized for measuring the relaxations of surface tension (ST) and surface area (SA), and the E was evaluated from the relaxation data of minute distinct perturbances. The data showed a clear variation in E during the BSA adsorption: E sharply decreased to a minimum at the early stage of BSA adsorption; then, it rose from this minimum and oscillated for a while before reaching an E corresponding to a saturated BSA film after a significant duration. The adsorbed BSA film took ~35 h to reach its saturated state, which was much longer than the reported lifetime of the adsorbed film in the literature. A rapid surface perturbation (forced bubble expansion/compression) could change the E, causing a significant drop in E followed by a slow increase to the original stable value.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3