A Study on the Dilational Modulus Measurement of Polyacrylic Acid Films at Air–Water Interface by Pendant Bubble Tensiometry

Author:

Maradiaga Rivas Johann Eduardo1,Chen Li-Jen2,Lin Shi-Yow1,Hussain Siam1

Affiliation:

1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

2. Department of Chemical Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei City 106, Taiwan

Abstract

The dilational modulus (E) of polymer films has been commonly measured using the oscillating ring/bubble/drop methods with an external force, and often without specifying the state of the adsorbed film. This study explores an approach where E was determined from the relaxations of surface tension (ST) and surface area (SA) of natural perturbations, in which ST and SA were monitored using a pendant bubble tensiometer. The E of the adsorbed film of PAA (polyacrylic acid) was evaluated for aqueous solutions at CPAA = 5 × 10−4 g/cm3, [MW = 5, 25, and 250 (kDa)]. The E (=dγ/dlnA) was estimated from the surface dilational rate (dlnA/dt) and the rate of ST change (dγ/dt) of the bubble surface from the natural perturbation caused by minute variations in ambient temperature. The data revealed that (i) a considerable time is required to reach the equilibrium-ST (γeq) and to attain the saturated dilational modulus (Esat) of the adsorbed PAA film, (ii) both γeq and Esat of PAA solutions increase with MW of PAA, (iii) a lower MW solution requires a longer time to reach its γeq and Esat, and (iv) this approach is workable for evaluating the E of adsorbed polymer films.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3