Abstract
The physicochemical properties of ligand-coated nanoparticles make them superior adsorbents for heavy metals from water. In this study, we investigate the adsorption potential of novel polyacrylic-co-maleic-acid-coated magnetite nanoparticles (PAM@MNP) to remove Pb2+ and Cu2+ from an aqueous solution. We argue that modifying the surface of MNP with PAM enhances the physicochemical stability of MNP, improving its ability to remove heavy metals. The adsorption kinetics data show that PAM@MNP attained sorption equilibrium for Pb2+ and Cu2+ after 60 min. The kinetics data are fitted accurately by the pseudo-first-order kinetic model. The calculated Langmuir adsorption capacities are 518.68 mg g−1 and 179.81 mg g−1 for Pb2+ and Cu2+, respectively (2.50 mmol g−1 and 2.82 mmol g−1 for Pb2+ and Cu2+, respectively). The results indicate that PAM@MNP is a very attractive adsorbent for heavy metals and can be applied in water remediation technologies.
Funder
German Federal Ministry of Education and Research
Subject
Colloid and Surface Chemistry,Chemistry (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献