Abstract
In this study, nanocomposite active films were fabricated containing silver nanoparticles (SNPs) embedded within soy protein isolate (SPI)/Persian gum (PG) matrices. The physical, mechanical, and antibacterial properties of these composite films were then characterized. In addition, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used to provide information about the microstructure, interactions, and crystallinity of the films. Pure SPI films had poor physicochemical attributes but the addition of PG (0.25, 0.5, or 1 wt%) improved their water vapor permeability, mechanical properties, and water solubility (WS). The moisture content (MC) of the films decreased after the introduction of PG, which was attributed to fewer free hydroxyl groups to bind to the water molecules. Our results suggest there was a strong interaction between the SPI and the PG and SNPs in the films, suggesting these additives behaved like active fillers. Optimum film properties were obtained at 0.25% PG in the SPI films. The addition of PG (0.25%) and SNPs (1%) led to a considerable increase in tensile strength (TS) and a decrease in elongation at break (EB). Furthermore, the incorporation of the SNPs into the SPI/PG composite films increased their antibacterial activity against pathogenic bacteria (Escherichia coli and Staphylococcus aureus), with the effects being more prominent for S. aureus. Spectroscopy analyses provided insights into the nature of the molecular interactions between the different components in the films. Overall, the biodegradable active films developed in this study may be suitable for utilization as eco-friendly packaging materials in the food industry.
Subject
Colloid and Surface Chemistry,Chemistry (miscellaneous)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献