Increasing the Efficiency of Emulsion Crystallization in Stirred Vessels by Targeted Application of Shear and Surfactant

Author:

Kaysan Gina1ORCID,Elmlinger Linda1,Kind Matthias1ORCID

Affiliation:

1. Institute for Thermal Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Abstract

Emulsions containing crystalline dispersed phases hold significant importance in pharmaceutical, chemical, and life science industries. The industrial agitation and storage of these emulsions can prompt crystallization effects within the flow field, intersecting with the primary nucleation mechanisms. Notably, contact-mediated nucleation, in which subcooled droplets crystallize upon contact with a crystalline particle, and shear-induced crystallization due to droplet deformation, are both conceivable phenomena. This study delves into the crystallization processes of emulsions in a 1 L stirred vessel, integrating an ultrasonic probe to monitor droplet crystallization progression. By scrutinizing the influence of the flow field and of the emulsifiers stabilizing the droplets, our investigation unveils the direct impact of enhanced rotational speed on accelerating the crystallization rate, correlating with increased energy input. Furthermore, the concentration of emulsifiers is observed to positively affect the crystallization process. Significantly, this pioneering investigation marks the first evaluation of emulsion crystallization considering the overlapping nucleation mechanisms seen in industrial production of melt emulsions. The findings offer valuable insights for more systematic control strategies in emulsion crystallization processes, promising more efficient and sustainable industrial practices by enabling targeted application of shear and surfactants.

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3