Simulation and Experimental Analysis of Microalgae and Membrane Surface Interaction

Author:

Khosravizadeh Negar1,Lu Duowei1,Liao Yichen1,Liao Baoqiang1,Fatehi Pedram1ORCID

Affiliation:

1. Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada

Abstract

The microalgae-induced membrane system applied in wastewater treatment has attracted attention due to microalgae’s outstanding nutrient fixation capacity and biomass harvesting. However, the fundamental understanding of the interaction of microalgae and membrane surfaces is still limited. This study presents experimental and numerical methods to analyze the attachment of microalgae to the membrane. An atomic force microscope (AFM) analysis confirmed that a polydimethylsiloxane (PDMS) sensor, as a simulated membrane surface, exhibited a rougher surface morphology than a polyurethane (PU) sensor did. The contact angle and adsorption analysis using a quartz crystal microbalance confirmed that the PDMS surface, representing the membrane surface, provided a better attachment affinity than the PU surface for microalgae because of the lower surface tension and stronger hydrophobicity of PDMS. The simulation studies of this work involved the construction of roughly circular-shaped particles to represent microalgae, rough flat surfaces to represent membrane surfaces, and the interaction energy between particles and surfaces based on XDLVO theory. The modeling results of the microalgae adsorption trend are consistent and verified with the experimental results. It was observed that the interfacial energy increased with increasing the size of particles and asperity width of the membrane surface. Contrarily, the predicted interaction energy dropped with elevating the number of asperities and asperity height of the microalgae and membrane. The most influential parameter for controlling interfacial interaction between the simulated microalgae and membrane surface was the asperity height of the membrane; changing the height from 50 nm to 250 nm led to alteration in the primary minimum from −18 kT to −3 kT. Overall, this study predicted that the microalgae attachment depends on the size of the asperities to a great extent and on the number of asperities to a lesser extent. These results provide an insight into the interaction of microalgae and membrane surface, which would provide information on how the performance of microalgae-based membrane systems can be improved.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3