Acid-adapted microalgae exhibit phenotypic changes for their survival in acid mine drainage samples

Author:

Abinandan Sudharsanam1,Perera Isiri Adhiwarie1,Subashchandrabose Suresh R12,Venkateswarlu Kadiyala3,Cole Nicole4,Megharaj Mallavarapu12

Affiliation:

1. Global Centre for Environmental Remediation (GCER), Faculty of Science, ATC Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

2. Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308 Australia

3. Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India

4. Analytical and Biomolecular Research Facility (ABRF), University of Newcastle, University Drive, Callaghan, NSW 2308 Australia

Abstract

ABSTRACT Phenotypic plasticity or genetic adaptation in an organism provides phenotypic changes when exposed to the extreme environmental conditions. The resultant physiological and metabolic changes greatly enhance the organism's potential for its survival in such harsh environments. In the present novel approach, we tested the hypothesis whether acid-adapted microalgae, initially isolated from non-acidophilic environments, can survive and grow in acid-mine-drainage (AMD) samples. Two acid-adapted microalgal strains, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, were tested individually or in combination (co-culture) for phenotypic changes during their growth in samples collected from AMD. The acid-adapted microalgae in AMD exhibited a two-fold increase in growth when compared with those grown at pH 3.5 in BBM up to 48 h and then declined. Furthermore, oxidative stress triggered several alterations such as increased cell size, granularity, and enhanced lipid accumulation in AMD-grown microalgae. Especially, the apparent limitation of phosphate in AMD inhibited the uptake of copper and iron in the cultures. Interestingly, growth of the acid-adapted microalgae in AMD downregulated amino acid metabolic pathways as a survival mechanism. This study demonstrates for the first time that acid-adapted microalgae can survive under extreme environmental conditions as exist in AMD by effecting significant phenotypic changes.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3