Measuring Inner Layer Capacitance with the Colloidal Probe Technique

Author:

Smith Alexander,Maroni Plinio,Borkovec Michal,Trefalt GregorORCID

Abstract

The colloidal probe technique was used to measure the inner layer capacitance of an electrical double layer. In particular, the forces were measured between silica surfaces and sulfate latex surfaces in solutions of monovalent salts of different alkali metals. The force profiles were interpreted with Poisson-Boltzmann theory with charge regulation, whereby the diffuse layer potential and the regulation properties of the interface were obtained. While the diffuse layer potential was measured in this fashion in the past, we are able to extract the regulation properties of the inner layer, in particular, its capacitance. We find systematic trends with the type of alkali metal ion and the salt concentration. The observed trends could be caused by difference in ion hydration, variation of the binding capacitance, and changes of the effective dielectric constant within the Stern layer. Our results are in agreement with recent experiments involving the water-silica interface based on a completely independent method using X-ray photoelectron spectroscopy in a liquid microjet. This agreement confirms the validity of our approach, which further provides a means to probe other types of interfaces than silica.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Université de Genève

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Reference68 articles.

1. Colloidal Dispersions;Russel,1989

2. Particle Deposition and Aggregation: Measurement, Modeling, and Simulation;Elimelech,1995

3. Organic polyelectrolytes in water treatment

4. Role of the aggregation behavior of hydrophobic particles in paper surface hydrophobation

5. Fabrication of rough colloids by heteroaggregation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3