Abstract
The ground moving target (GMT) is defocused due to unknown motion parameters in synthetic aperture radar (SAR) imaging. Although the conventional Omega-K algorithm (Omega-KA) has been proven to be applicable for GMT imaging, its disadvantages are slow imaging speed, obvious sidelobe interference, and high computational complexity. To solve the above problems, a SAR-GMT imaging network is proposed based on trainable Omega-KA and sparse optimization. Specifically, we propose a two-dimensional (2-D) sparse imaging model deducted from the Omega-KA focusing process. Then, a recurrent neural network (RNN) based on an iterative optimization algorithm is built to learn the trainable parameters of Omega-KA by an off-line supervised training method, and the solving process of the sparse imaging model is mapped to each layer of the RNN. The proposed trainable Omega-KA network (Omega-KA-net) forms a new GMT imaging method that can be applied to high-quality imaging under down-sampling and a low signal to noise ratio (SNR) while saving the imaging time substantially. The experiments of simulation data and measured data demonstrate that the Omega-KA-net is superior to the conventional algorithms in terms of GMT imaging quality and time.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献