A Multicomponent Linear Frequency Modulation Signal-Separation Network for Multi-Moving-Target Imaging in the SAR-Ground-Moving-Target Indication System

Author:

Ding Chang1ORCID,Mu Huilin2ORCID,Zhang Yun3

Affiliation:

1. Shaanxi Key Laboratory of Artificially Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China

2. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

3. Department of Electronic Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Multi-moving-target imaging in a synthetic aperture radar (SAR) system poses a significant challenge owing to target defocusing and being contaminated by strong background clutter. Aiming at this problem, a new deep-convolutional-neural-network (CNN)-assisted method is proposed for multi-moving-target imaging in a SAR-GMTI system. The multi-moving-target signal can be modeled by a multicomponent LFM signal with additive perturbation. A fully convolutional network named MLFMSS-Net was designed based on an encoder–decoder architecture to extract the most-energetic LFM signal component from the multicomponent LFM signal in the time domain. Without prior knowledge of the target number, an iterative signal-separation framework based on the well-trained MLFMSS-Net is proposed to separate the multi-moving-target signal into multiple LFM signal components while eliminating the residual clutter. It works well, exhibiting high imaging robustness and low dependence on the system parameters, making it a suitable solution for practical imaging applications. Consequently, a well-focused multi-moving-target image can be obtained by parameter estimation and secondary azimuth compression for each separated LFM signal component. The simulations and experiments on both airborne and spaceborne SAR data showed that the proposed method is superior to traditional imaging methods in both imaging quality and efficiency.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation Funded Project

Natural Science Foundation of Shaanxi Province

Open Fund of Shaanxi Key Laboratory of Artificially Structured Functional Materials and Devices

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3