Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model

Author:

Zhang Wangfei,Zhao Lixian,Li Yun,Shi Jianmin,Yan Min,Ji YongjieORCID

Abstract

Forest biomass change monitoring is essential for climate change. Synthetic aperture radar (SAR) and optimal remote sensing (RS) data are two very helpful data sources for forest biomass monitoring and estimation. During the procedure of biomass estimation using RS technique, optimal features selection and estimation models used are two critical steps. This paper therefore focuses on building an operational and robust method of biomass retrieval using optical and SAR RS data. First, random forest (RF) algorithms are used for reducing time-consuming and decreasing computational burden; then, an iterative procedure was embedded in K-nearest neighbor (KNN) algorithms for the best optimal feature selection and combination; last, the best feature combinations and KNN models were applied for forest biomass estimation. Moreover, forest type effects and RS feature source effects were considered. The results showed that feature combination of two optical images and the SAR image showed highest estimation accuracy by using the proposed algorithm (R2 = 0.70 for Forest-1, R2 = 0.72 for Forest-2, and R2 = 0.71 for Forest-3; RMSE = 16.18 Mg/ha for Forest-1, RMSE =17.66 Mg/ha for Forest-2, and RMSE = 18.67 Mg/ha for Forest-3, where Forest-1 is natural pure forests of Yunnan Pines, Forest-2 is natural mixed coniferous forests, and Forest-3 is the combination of Forest-1 and Forest-2). With the comparative analysis of proposed algorithm and different non-parametric algorithms, traditional nonparametric algorithms performed better in Forest-1, but worse in Forest-2 and Forest-3, while the proposed algorithm performed no obvious difference in three forest types and using five feature groups. The results revealed that the proposed algorithm was robust in biomass estimation, with almost no feature source and forest structure dependent for biomass estimation.

Funder

Wangfei Zhang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3