SkySat Data Quality Assessment within the EDAP Framework

Author:

Saunier Sebastien,Karakas Gizem,Yalcin IlyasORCID,Done Fay,Mannan Rubinder,Albinet Clement,Goryl Philippe,Kocaman SultanORCID

Abstract

Cal/Val activities within the Earthnet Data Assessment Pilot (EDAP) Project of the European Space Agency (ESA) cover several Earth Observation (EO) satellite sensors, including Third-Party Missions (TPMs). As part of the validation studies of very-high-resolution (VHR) sensor data, the geometric and radiometric quality of the images and the mission compliance of the SkySat satellites owned by Planet were evaluated in this study. The SkySat constellation provides optical images with a nominal spatial resolution of 50 cm, and has the capacity for multiple visits of any place on Earth each day. The evaluations performed over several test sites for the purpose of the EDAP Maturity Matrix generation show that the high resolution requirement is fulfilled with high geometric accuracy, although various systematic and random errors could be observed. The 2D and 3D information extracted from SkySat data conform to the quality expectations for the given resolution, although improvements to the vendor-provided rational polynomial coefficients (RPCs) are essential. The results show that the SkySat constellation is compliant with the specifications and the accuracy results are within the ranges claimed by the vendor. The signal-to-noise ratio assessments revealed that the quality is high, but variations occur between the different sensors.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-term assessment and analysis of the radiometric quality of standard data products for Chinese Gaofen-1/2/6/7 optical remote sensing satellites;Remote Sensing of Environment;2024-07

2. Assessing the spatial resolution distance of satellite images: SuperDove versus Landsat 8;International Journal of Remote Sensing;2024-06-12

3. Building Detection from SkySat Images with Transfer Learning: a Case Study over Ankara;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-03-18

4. Characterizing CNN-Based Vessel Detection Algorithm Sensitivity to Optical Sensor Artifacts;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

5. Combined Fuzzy Sliding-Mode Attitude Stabilization and Energy Storage for Small Satellite;IEEE Transactions on Aerospace and Electronic Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3