Deep Learning for Archaeological Object Detection on LiDAR: New Evaluation Measures and Insights

Author:

Fiorucci MarcoORCID,Verschoof-van der Vaart Wouter B.ORCID,Soleni Paolo,Le Saux Bertrand,Traviglia AriannaORCID

Abstract

Machine Learning-based workflows are being progressively used for the automatic detection of archaeological objects (intended as below-surface sites) in remote sensing data. Despite promising results in the detection phase, there is still a lack of a standard set of measures to evaluate the performance of object detection methods, since buried archaeological sites often have distinctive shapes that set them aside from other types of objects included in mainstream remote sensing datasets (e.g., Dataset of Object deTection in Aerial images, DOTA). Additionally, archaeological research relies heavily on geospatial information when validating the output of an object detection procedure, a type of information that is not normally considered in regular machine learning validation pipelines. This paper tackles these shortcomings by introducing two novel automatic evaluation measures, namely ‘centroid-based’ and ‘pixel-based’, designed to encode the salient aspects of the archaeologists’ thinking process. To test their usability, an experiment with different object detection deep neural networks was conducted on a LiDAR dataset. The experimental results show that these two automatic measures closely resemble the semi-automatic one currently used by archaeologists and therefore can be adopted as fully automatic evaluation measures in archaeological remote sensing detection. Adoption will facilitate cross-study comparisons and close collaboration between machine learning and archaeological researchers, which in turn will encourage the development of novel human-centred archaeological object detection tools.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3