Learning to Classify Structures in ALS-Derived Visualizations of Ancient Maya Settlements with CNN

Author:

Somrak Maja,Džeroski Sašo,Kokalj ŽigaORCID

Abstract

Archaeologists engaging with Airborne Laser Scanning (ALS) data rely heavily on manual inspection of various derived visualizations. However, manual inspection of ALS data is extremely time-consuming and as such presents a major bottleneck in the data analysis workflow. We have therefore set out to learn and test a deep neural network model for classifying from previously manually annotated ancient Maya structures of the Chactún archaeological site in Campeche, Mexico. We considered several variations of the VGG-19 Convolutional Neural Network (CNN) to solve the task of classifying visualized example structures from previously manually annotated ALS images of man-made aguadas, buildings and platforms, as well as images of surrounding terrain (four classes and over 12,000 anthropogenic structures). We investigated how various parameters impact model performance, using: (a) six different visualization blends, (b) two different edge buffer sizes, (c) additional data augmentation and (d) architectures with different numbers of untrainable, frozen layers at the beginning of the network. Many of the models learned under the different scenarios exceeded the overall classification accuracy of 95%. Using overall accuracy, terrain precision and recall (detection rate) per class of anthropogenic structure as criteria, we selected visualization with slope, sky-view factor and positive openness in separate bands; image samples with a two-pixels edge buffer; Keras data augmentation; and five frozen layers as the optimal combination of building blocks for learning our CNN model.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Interpreting Archaeological Topography: 3D Data, Visualization and Observation;Opitz,2013

2. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice;Kokalj,2017

3. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala

4. Using Airborne Lidar in Archaeological Survey: The Light Fantastic;Crutchley,2018

5. Mapping Maya Hinterlands: LiDAR Derived visualization to identify small scale features in northwestern Belize;McFarland;Humboldt J. Soc. Relat.,2019

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3