Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect

Author:

Nguyen Thi Hanh,Wang San-LangORCID,Nguyen Thi Huyen,Doan Manh DungORCID,Tran Thi Ha Trang,Ngo Van Anh,Ho Nhat Duoc,Tran Thi NgocORCID,Doan Chien ThangORCID,Do Van Chung,Nguyen Anh DzungORCID,Nguyen Van BonORCID

Abstract

Fishery by-products (FBPs) have been increasingly investigated for the extraction and production of a vast array of active molecules. The aim of this study was to produce phenazine compounds from FBPs via microbial fermentation and assess their novel antinematode effect. Among various FBPs, squid pen powder (SPP) was discovered as the most suitable substrate for phenazine production by Pseudomonas aeruginosa TUN03 fermentation. Various small-scale experiments conducted in flasks for phenazine production indicated that the most suitable was the newly designed liquid medium which included 1% SPP, 0.05% MgSO4, and 0.1% Ca3(PO4)2 (initial pH 7). Phenazines were further studied for scale-up bioproduction in a 14 L bioreactor system resulting in a high yield (22.73 µg/mL) in a much shorter cultivation time (12 h). In the fermented culture broth, hemi-pyocyanin (HPC) was detected as a major phenazine compound with an area percentage of 11.28% in the crude sample. In the bioactivity tests, crude phenazines and HPC demonstrate novel potential nematicidal activity against black pepper nematodes, inhibiting both juveniles (J2) nematodes and egg hatching. The results of this work suggest a novel use of SPP for cost-effective bioproduction of HPC, a novel potential nematodes inhibitor. Moreover, the combination of MgSO4 and Ca3(PO4)2 was also found to be a novel salt composition that significantly enhanced phenazine yield by P. aeruginosa fermentation in this work.

Funder

Ministry of Science and Technology, Taiwan

Tay Nguyen University

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3