Mechanism-Independent Manipulation of Single-Wall Carbon Nanotubes with Atomic Force Microscopy Tip

Author:

Ju Dianming,Zhang Ying,Li Rui,Liu ShuangORCID,Li LonghaiORCID,Chen Haitao

Abstract

Atomic force microscopy (AFM) based nanomanipulation can align the orientation and position of individual carbon nanotubes accurately. However, the flexible deformation during the tip manipulation modifies the original shape of these nanotubes, which could affect its electrical properties and reduce the accuracy of AFM nanomanipulation. Thus, we developed a protocol for searching the synergistic parameter combinations to push single-wall carbon nanotubes (SWCNTs) to maintain their original shape after manipulation as far as possible, without requiring the sample physical properties and the tip-manipulation mechanisms. In the protocol, from a vast search space of manipulating parameters, the differential evolution (DE) algorithm was used to identify the optimal combinations of three parameters rapidly with the DE algorithm and the feedback of the length ratio of SWCNTs before and after manipulation. After optimizing the scale factor F and crossover probability Cr, the values F = 0.4 and Cr = 0.6 were used, and the ratio could reach 0.95 within 5–7 iterations. A parameter region with a higher length ratio was also studied to supply arbitrary pushing parameter combinations for individual manipulation demand. The optimal pushing parameter combination reduces the manipulation trajectory and the tip abrasion, thereby significantly improving the efficiency of tip manipulation for nanowire materials. The protocol for searching the best parameter combinations used in this study can also be extended to manipulate other one-dimensional nanomaterials.

Funder

University Nursing Program for Young Scholar with Creative Talents in Heilongjiang Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3