Implementation of flexible virtual microchannels based on optically induced dielectrophoresis

Author:

Li Bo,Yang Huanzhou,Song Zhengxun,Xu Hongmei,Wang Jiajia,Wang ZuobinORCID

Abstract

Abstract Micro-nano particle manipulation methods in liquid environments have been widely used in the fields such as medicine, biology and material science. Nevertheless, the methods usually rely on pre-prepared physical microfluidic channels. In this work, virtual electrodes based on the optically induced dielectrophoresis (ODEP) method were used as virtual microchannels instead of traditional physical microfluidic channels. Virtual microchannels with different shapes were implemented by the designs of projected light patterns, which made the virtual microchannels have great flexibility and controllability. The theory of ODEP was verified by simulation and analysis of electric field distributions. The relationship between the manipulation force and the alternating current (AC) voltage or the AC frequency exerted on the cells was assessed. The experimental results indicated that the manipulation force was increased with the increase of the AC voltage, and it was reduced with the increase of the AC frequency. Moreover, different virtual microchannels were designed to carry out the transportation, aggregation and sorting of yeast cells and rat basophilic leukemia cells (RBL-2H3 cells) and the survival rate of the cells was evaluated. This work shows that the virtual microchannels can be flexibly realized by ODEP in liquid environments.

Funder

Jilin Province Education Department Program

Jilin Provincial Science and Technology Program

"111" Project of China

National Key R&D Program of China

National Natural Science Foundation Program of China

EU H2020 Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3