Affiliation:
1. Department of Urban and Environmental Disaster Prevention Engineering, Kangwon National University, Samcheok-si 25913, Republic of Korea
2. Department of Artificial Intelligence & Software, Kangwon National University, Samcheok-si 25913, Republic of Korea
Abstract
In this study, we analyzed the characteristics of the heavy rainfall events that occurred in Seoul in 2022 and compared them with the projections of the representative concentration pathway (RCP). The analysis results indicated that climate change is ongoing. In this era of climate crisis, based on the shared socioeconomic pathway (SSP) data, we projected the 20-year frequency rainfall for South Korea at intervals of 1 day/24 h. Our results indicate that the maximum rainfall (with a 24 h duration) will increase by ~18% in the second half of the 21st century, compared to the current maximum rainfall. Finally, we projected the intensity–duration–frequency (IDF) curve for the infrastructure design of Seoul. According to the projected IDF curve, across all durations, the rainfall intensity was the strongest in the early 21st century, indicating that at present, we are in the midst of a climate crisis. Thus, it is important to develop and implement effective urban and river flood management measures to mitigate the current effects of climate change. Notably, our study can serve as a reference for future studies on climate change and help policymakers and decision-makers develop relevant policies and mitigation strategies related to the effects of climate change.
Funder
Ministry of Interior and Safety
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献