Bayesian Estimation of Neyman–Scott Rectangular Pulse Model Parameters in Comparison with Other Parameter Estimation Methods

Author:

Nizeyimana Pacifique1,Lee Kyeong Eun2,Kim Gwangseob3ORCID

Affiliation:

1. Department of Big Data Analytics, Faculty of IT, Adventist University of Central Africa, Kigali 2461, Rwanda

2. Department of Statistics, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

3. School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

Abstract

Neyman–Scott rectangular pulse is a stochastic rainfall model with five parameters. The impacts of initial values and optimization methods on the parameter estimation of the Neyman–Scott rectangular pulse model were investigated using both the method of moments and the method of maximum likelihood. The estimates using the method of moments were influenced by the optimization method and were sensitive to the initial values and the aggregation scale of the data. Thus, by using frequentist estimation methods, we cannot guarantee the unique values as estimates. The aim of this study is to find more reliable unique values as estimates using a Bayesian approach. In this approach, parameters are estimated from the posterior distribution, and model performance is assessed by comparing observed values with fitted values. Slice sampling within the Gibbs sampler algorithm demonstrates superior convergence and model fitting, yielding unique estimates for the model parameters. The main conclusion of this study is that Bayesian estimation methods outperform other estimation methods in terms of providing reliable and stable estimates that improve rainfall generation accuracy.

Funder

Ministry of Interior and Safety

Publisher

MDPI AG

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3